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SUMMARY 

We present a computationally efficient approach to GBLUP which approximates inverse 

reference set matrix by optimally selecting the most informative animal cohort.  The optimal 

animal cohort, named core reference animals, are identified through a Partial Incomplete Cholesky 

Decomposition (PICD) and selected such that the reconstruction error is at a specified user 

percentage. Our application of PICD on the Australian Holstein and Jersey reference sets shows 

that allowing a small error halves the effective size of reference set, resulting in significant gains in 

performance with only minor differences between exact and approximate breeding values and 

reliabilities (r > 0.99).  Overall our results show that application of methods like PICD aimed at 

eliminating redundancy within large reference sets, significant performance gains can be made 
without sacrificing accuracy. 

 

INTRODUCTION 

Genomic evaluations are routinely used to evaluate the performance of dairy cattle world-wide.  

These genomic evaluations impose a significant and ever increasing computational burden on the 

evaluation organisations. This computational burden must be offset by the requirement to maintain 

a meaningful animal reference set to ensure that accurate and reliable predictions are made for the 

young animals entering the system.  Up to now the focus has been on increasing the accuracy and 

reliability of genomic evaluations with projects such as GINFO (Pryce et al, in press) succeeding 

in increasing the overall reliability of the Australian genomic evaluations between 2 and 7 percent, 

by doubling the number of animals in the reference set. The cost of doubling the size of the 
reference set results in a dramatic increase in computational burden. GBLUP (Van Raden, 2008) 

like algorithms can be solved for breeding values using gradient techniques highly efficiently, 

however the reliability computation requires the explicit inverse of the genomic reference set 

matrix which scales at cubic complexity. With reference sets continuing to grow, and now 

including more than 35000 Australian dairy animals, more efficient solutions for genomic 

evaluations are required. 

The accuracy and reliability of a genomic breeding value for a young, non-reference animal, is 

not based on the size of the reference set, but how related that animal is to the reference set.  

Additionally, the genomic relationship structure within the reference set animals are not related to 

the quality of their phenotypic information.  Therefore simply adding animals to the reference set 

based on the quality of their phenotype alone will not ensure more reliable predictions into the 

future and is likely to make routine evaluations computationally infeasible.  
In this paper we investigate the feasibility of a Partial Incomplete Cholseky Decomposition 

PICD (Foster et al, 2009) to identify a smaller cohort of reference set animals, named core 

reference set animals, which can be used to optimally represent the structure within full reference 

set. PICD has been shown in kernel regression literature to provide a robust approximate solution 

to a related model to GBLUP (Foster et al, 2009).  In this paper we extend PICD for application to 

the GBLUP model by accounting for the diagonal weighting of all reference set animals to ensure 

that phenotype accuracy information is included in the evaluation of all animals.  We show that 

application of PICD with a small degree of error can significantly reduce computational time 

without dramatically moving from the estimated breeding values or reliability from the full model. 
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MATERIALS AND METHODS 

The equations for the GBLUP breeding values �̂� and reliabilities rel are as follows (Van 

Raden, 2008), 

�̂� = 𝑮𝑐𝑟(𝑮𝑟𝑟 + 𝑹)−1𝒚            and          𝒓𝒆𝒍 =
𝐝𝐢𝐚𝐠[𝑮𝑐𝑟(𝑮𝑟𝑟 + 𝑹)−1𝑮𝑐𝑟

𝑇 ]

𝐝𝐢𝐚𝐠[𝑮]
  . 

where 𝑮𝑟𝑟  is the genomic relationship matrix of the reference set animals, 𝑹 is a diagonal matrix 

of observation weights and 𝑮𝑐𝑟 is the genomic covariance matrix of all animals with the reference 

set animals.  The cost of a GBLUP model is in the evaluation of (𝑮𝑟𝑟 + 𝑹)−1 where the number of 

required operations scales cubically, 𝑂(𝑟3), as the number of reference set animals, r, increases. 
Partial Incomplete Cholesky Decomposition (PICD) (Foster et al, 2009) is a variant of the 

Cholesky decomposition which employs both row pivoting and a diagonal error tolerance to create 

a rank-reduced decomposition.  The purpose of PICD is to select from 𝑮𝑟𝑟  a reduced cohort of 

animals, called core reference animals, which are representative of the entire population.  This 

cohort can then be used to reconstruct 𝑮𝑟𝑟  by, 

𝑮𝑟𝑟 = 𝑳𝑇𝑳 ≈ 𝑳𝑘
𝑇𝑳𝑘 , 

where k is the set of core reference animals, k < r, and 𝑳𝑘 is the Cholesky complement only 

including the currently selected k animals.  
The PICD algorithm identifies the core reference animal by performing single Cholesky 

updates to 𝑳𝑘 , animal-by-animal in a stage-wise and greedy fashion where the next animal to be 

added 𝑳𝑘 is selected such that it maximally reduces the reconstruction error.  The reconstruction 

error is a measurement of how well 𝑳𝑘
𝑇𝑳𝑘 predicts 𝑮𝑟𝑟 .  The addition of all r animals completely 

reconstructs the full Cholesky complement with no error. Therefore the reconstruction error can be 

measured as a percentage of complete reconstruction. 

The algorithm requires as input the acceptable amount of error as a percentage, and from this 

will create a Cholskey complement, 𝑳𝑘, of size (N, k)  where k number of animals required to 

approximate the original matrix at that error percentage.  The advantage of using this approach to 

others such as Singular Value Decomposition (SVD) is its ability to pick the specific animals 

required for the reconstruction, whereas SVD projects each animal onto every eigenvector.  

Therefore PICD is a means of selecting the most informative animals from the reference set. 

PCID when used in the kernel regression setting reduces the cost complexity from order 𝑂(𝑟3) 

to 𝑂(𝑘𝑟2) (Rasmussen and Williams, 2006).  However, within the reference set of GBLUP there 
are also observation weightings defined.  To allow for all reference set animals to have their 

observation weight applied we must derive a subset-of-regressors approximation of (𝑮𝑟𝑟 + 𝑹)−1 

using the Nystrom approximation of 𝑮𝑟𝑟  (Rasmussen and Williams, 2006).  The Nystrom 

approximation of 𝑮𝑟𝑟  is the approximation of the 𝑮𝑟𝑟  using a subset of rows and can be expressed 
as, 

�̂�𝑟𝑟 = 𝑮𝑟𝑘𝑮𝑘𝑘
−1𝑮𝑘𝑟 

where the k animals are selected from the reference set using PICD.  From this representation of 

�̂�𝑟𝑟  we can apply the Woodbury matrix identity to gain an approximation of the whole system 

inclusive of the observation weights, 

(𝑮𝑟𝑟 + 𝑹)−1 ≈ (�̂�𝑟𝑟 + 𝑹)
−1

= 𝑹−1 − 𝑹−1𝑮𝑟𝑘(𝑮𝑘𝑘 + 𝑮𝑘𝑟𝑹−1𝑮𝑟𝑘)−1𝑮𝑘𝑟𝑹−1 

where 𝑮𝑟𝑘  is the covariance between the all reference animals and the core reference animals.   

This approximation to GBLUP allows for a selection of core animals from the reference set, 

without losing any phenotypic information from the model. Once the solution to the approximate 

GBLUP is attained the pre and post multiplication by 𝑮𝑐𝑟 is still required to compute the breeding 

values and reliabilities respectively.  If no error tolerance is specified the approximation will yield 

exactly the same results as solving the system directly.  It is suggested that this be treated like a 

heritability analysis and run once annually, out of scope of an evaluation. 
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PICD is also similar in idea to the sparse inverse of 𝑮 with the APY algorithm of (Misztal, 

2014) however PICD is a reduced rank approximation where as APY is a sparse approximation.  

The main advantage of PICD over APY is reducing the size of the entire system required to be 

solved through the efficient use of the Woodbury matrix identity above.  APY on the other hand 

approximates only 𝑮 or 𝑮−𝟏 which still requires the addition of observation weights, 𝑹, and 
solution of the entire system to be computed. 

 

MATERIALS AND METHODS 

To evaluate our proposed PICD approximated GBLUP we perform a simple parameter sweep 
on the percent error for the PICD algorithm and evaluate three different metrics. 

1. The computational elapsed time. 

2. The number of animals in the core reference set. 

3. The correlation between breeding values and reliabilities as compared to the exact 

solutions. 

The PICD program was developed in-house and implemented in R using Rcpp and compiled using 

the Intel MKL library.  The datasets under consideration are the 58961 non-duplicated Holstein 

bulls and cows as well as the 11768 non-duplicated Jersey bulls and cows from the December 

2016 ABV ADHIS release. Of these animals 32481 Holstein and 8846 Jersey bulls and cows were 

found in the full Protein GEBV reference set.  The parameter sweep is run between 0 and 50% 

allowable error in increments of 5%. 
 

RESULTS AND DISCUSSION 

 
Figure 1: Holstein parameter screening results. Green line is the correlation between the exact solution and 
the PICD algorithm and the blue dots are the average correlation of 10 repeats of randomly selecting rows at 
four specified error tolerance. 

 
Figure 2: Jersey parameter screening results. Green line the correlation between the exact solution and PICD 
algorithm and the blue dots are the average correlation of 10 repeats of randomly selecting rows at four 
specified error tolerance. 

Figure 1 and 2 present the parameter sweep results for the Holstein and Jersey analyses 

respectively.  The results include the computation of breeding values and reliability for all animals 
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in the analysis, including non-reference animals with no phenotype.  From left to right, the first 

two plots are the correlation between approximate breeding values and reliabilities compared to 

exact GBLUP calculation, the dimension of the core reference animal set, k, and the run time.  

Both Holstein and Jersey sets share the same profile, where at small amount of acceptable 

errors the approximate methods correlate very well (r > 0.99, % error = 0.05) with the exact 
solutions. The animals removed are predominantly bulls rather than cows.  In of the 7754 cows 

and 1092 bulls in the Jersey reference set 2464 (32 %) cows and 591 (54 %) bulls were removed 

by PICD at 0.05 error tolerance.  Of the 28228 cows and 4253 bulls in the Holstein reference set 

13761 (49 %) cows and 3295 (78 %) bulls were removed PICD at 0.05 error tolerance.  The 

removal of bulls from the reference is likely due to the selection of bulls results in stronger 

relationships between them, and therefore they produce more redundant set in terms of genotypic 

variation. The surprising result from these parameter sweeps by imposing only a small error the 

amount of animals in the core reference set is approximately. 

The observed massive reduction in the reference set size is a result of the genomic redundancy 

within the reference set created by one-sided selection of animals.  Reference set inclusion is based 

bulls having more than 10 daughters or cows in specific projects with phenotypic records, not on 

how related the animal is to the existing reference set. This approach is likely to select a reference 
set with a large number of highly related animals who collectively contribute very little to the 

performance of the overall evaluation. Algorithms like PICD are able to parse this redundant set 

and capture the key animals required to maintaining accuracy and reliability.  The availability of 

such algorithms therefore encourages the continued collection of phenotypes and from the ever 

increasing pool of reference set animals timely evaluations are still possible. 

At larger amounts of acceptable errors we observe that the PICD approximated reliabilities are 

significantly closer to the exact reliabilities than those computed from a random sample. However, 

the breeding values estimated by PICD are more poorly estimated, in particular within the Jersey 

analysis.  This drop in performance is because PICD seeks to remove all redundancy within the 

genomic relationship matrix, without any knowledge of the phenotype.  This style of selection may 

inadvertently remove animals with phenotypes that are highly informative for the trait under 
analysis because their relatives are already included in core reference set.  This reduces the 

accuracy of breeding value estimation, but not reliability estimation, as the reliability is a function 

only of the relationship matrix (the target of PICD) not the phenotypic importance. This problem is 

well known and could potentially be overcome by selecting an animal subset using more complex 

objective functions which seek to balance the contributions from both left and right hand side 

GBLUP equations (Rasmussen and Williams, 2006). 

In conclusion we have shown that it is possible to dramatically decrease the running time of 

genomic evaluations, without a significant impact on accuracy or reliability, by defining a smaller 

set of core reference animals. The implementation PICD with only small amount of error will 

reduce the computational burden on evaluation organisations allowing them to screen more 

animals, faster and more often. 
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